maandag 1 april 2019

Machine Learning

Types of machine-Learning

Supervised learning

  • Classification
    Regression

Unsupervised learning

  • Clustering
  • Anomaly detection

Other types


Supervised Learning

Input: Dataset of training examples
  • Input data (variables/features)
  • Desired output (label/target/class)

Result: predictive model
  • Input data -> label
Find underlying, predictive relationships
Important: Data has to be labeled (with desired outcome)

Supervised Learning: classification  

Data points are divided into classes    (label = class)

Model predicts what class a new data point should belong to

Example algorithms:
Logistic Regression, k-NN, Neural Networks, Decision Trees

Example Applications:
  • Churn prediction
  • Image recognition
  • Medical diagnosis

Supervised Learning: Regression

Given a historical list of instances with numerical values…     (label = numerical value)
Predict the numerical value of a new instance

Example algorithms:
Linear Regression, k-NN, Neural Networks

Example applications:
  • Stock market prediction
  • House price prediction
  • Sales prediction


What is a good model

Not good: fit the given data perfectly (overfitting)
a model must generalize well

Geen opmerkingen:

Een reactie posten

Datums bepalen adhv begin en einddatum in Dataframe

Voorbeeld op losse velden  ####################################################################### # import necessary packages from datetime...